
Identifier management in semantic
interoperability solutions for IoT

Maria Ganzha∗‡, Marcin Paprzycki∗§, Wiesław Pawłowski†∗, Paweł Szmeja∗

Katarzyna Wasielewska∗
∗ Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

† University of Gdańsk, Gdańsk, Poland
‡ Warsaw University of Technology, Warsaw, Poland
§ Warsaw Management Academy, Warsaw, Poland

Abstract—There are multiple ways, in which large-scale IoT
ecosystems can materialize. First, they can be instantiated as a
result of a specific project. For instance, when a city authority
decides to deploy an IoT-based smart city solution. Second, they
can be result of “organic growth”. For instance, a port authority
deploys smart lighting system, then it implements smart gate-
ways, and in the next stage it decides to combine these two, and
a smart container positioning system, into a complete port IoT
ecosystem. In the context of interoperability, one of the interesting
open issues is: how to manage identities of artifacts and entities
that constitute the IoT ecosystem. Identity management seems to
be relatively easy in the first case – identifier management can
be a part of the IoT deployment. However, as soon as multiple
artifacts are to be combined, the problem of identification is
no longer easy to solve. This is particularly the case when
(i) multiple artifacts originate from different vendors (that use
their own identity management approaches), and (ii) when the
interoperability solution is based on semantic technologies. In this
context, the aim of this contribution is to introduce an approach
to identifier management, as well as potential ID interoperability
architectures that have been developed within the scope of the
INTER-IoT project.

I. INTRODUCTION

By now, it is clear that the vision of large-scale IoT
ecosystem is likely to be realized by combining IoT artifacts
deployed in “earlier stages” of IoT evolution. Currently, dif-
ferent stakeholders instantiate “local”/“focused” solutions in
application domain specific “silos”, that are (i) delivered by
different vendors (form micro-SMEs to large companies), and
(ii) deal with limited in scope problems (e.g. smart lights in a
port, smart water metering in a city, local pollution monitoring,
etc.). As time passes, such “local” IoT deployments will start
to be combined into large(r)-scale solutions, e.g. combining
connected (autonomous) cars with a smart city IoT-based
parking system. This means an “interoperability solution” has
to be employed. As a matter of fact, the EC has recognized
this situation and, on January 1, 2016, seven projects devoted
to interoperability of IoT platforms have been deployed. One
of them is the INTER-IoT project, which utilizes semantic
technologies [1], [2], [3] to facilitate communication between
artifacts (in particular, concerning interoperability on top levels
of the software stack).

One of the interesting problems that materialize both, when
a single new large-scale IoT deployment takes place, and when

multiple existing IoT solutions are combined to create large(r)-
scale IoT ecosystem is the identifier management. The main
issue is to make sure that, in the final IoT ecosystem, each
“public” (“visible” to others) artifact has a unique ID. Here,
observe that uniqueness of artifact ID is “context-dependent”.
In other words, if an artifact A has a unique ID before
joining a “combined ecosystem”, after joining it, this cannot
be guaranteed. It may happen that in the other joining artifacts
there are also entities that have the same ID (you can even
think about two companies that are subject to a merger, and
both of them employ a single person named John Smith and
this has to be dealt with in the Human Resources department).

The aim of this contribution is to analyze the problem of
identity management and propose a scalable solution. We start
with brief outline of INTER-IoT approach to interoperability
(Section II). Next, in Section III we introduce typical issues re-
lated to IoT identifiers. We follow, in Section IV, with outline
of proposed IoT architectures and (in Section V) with discus-
sion of issues materializing in the context of interoperability,
during identity roaming and sharing. We complete the paper
with discussion of issues specific to the identity management
in the INTER-IoT project (Section VI) and conclusions and
future work.

II. INTER-IOT APPROACH TO INTEROPERABILITY

The INTER-IoT project takes a comprehensive approach
to the IoT platform interoperability problem, by offering a
solution across the whole communication/software stack. The
architecture of the INTER-IoT approach distinguishes five
layers, and provides layer-specific interoperability mechanisms
for each of them. Altogether, they form the inter-layer inter-
operability framework. More specifically:

• device layer – offers Device to Device Gateway, pro-
viding a unified interface for access and control over
heterogeneous devices, enabling them to interact with
each other,

• networking layer – uses Software Defined Networking
(SDN) and Software Defined Radio (SDR) paradigms, to
manage information flow and routing in a heterogeneous
networking environment,

• middleware layer – achieves interoperability through the
INTER-MW (INTER-Middleware) abstraction layer and

978-1-5386-4328-0/18/$31.00 ©2018 IEEE

subsequent attachment of all platforms/artifacts to it via
bridges,

• application services layer – applying methods of Flow
Based Programming, and utilizing service cataloging, dis-
covery, and composition, enables reuse of heterogeneous
services offered by artifacts forming the ecosystem,

• data & semantics layer – offers common understanding
and seamless semantic translation of data and information
via the Inter-Platform Sematic Mediator (IPSM) [7], [8].

Here, we are mostly interested in the higher-level layers, espe-
cially middleware and data & semantics, since they explicitly
utilize semantic methods and thus, require a comprehensive
identifier handling solution. Obviously, semantics necessarily
needs to describe/refer to (at least provisionally) lower-layer
entities, such as devices or services.

At the very heart of the INTER-MW solution lies the
message exchange and translation (via IPSM). Internally to the
INTER-MW, all messages are represented as RDF [9] graphs,
serialized in JSON-LD [10].

Note that, here, we address a very specific problem of
identification of entities that messages, exchanged in an intero-
perable IoT ecosystem, are about. The architectures discussed
herein do not offer interoperability solution as such, but should
rather be considered as an important part of such a solution.
We invite interested readers to study our work concerning
syntactic [11], and semantic [8], [12], [13] interoperability,
all focused on IoT.

III. IOT ARTIFACTS AND THEIR IDENTIFIERS

Identifiers play an important role in large complex sys-
tems (distributed ones, in particular). They may be based
on some inherent traits/patterns present in the object to be
identified (e.g. DNA profile, fingerprints, etc.), or “artificially”
added/created (serial numbers, TAX IDs, car VIN numbers,
etc.). Identifiers are particularly important in the World Wide
Web, where they are used, in the form of URLs, to refer to
almost any kind of resource.

The most important property of any identifier is its uni-
queness – understood as ensuring that, in a given context,
there should be only a single entity having given ID. Often,
other properties, like persistence (long-term existence of an
identifier) or immutability (the same identifier being “always”
associated with the same entity) are also considered/required.
ISBN, ISSN, DOI, PURL are all examples of persistent (and
immutable) identifiers. Some forms of identifiers can also be
actionable (allowing some action/behavior to be associated
with them). Archetypal examples of actionable identifiers are
URLs, other instances include DOIs, PURLs, etc.

Obviously, context, in which identifiers are considered, is
very important. The larger and more complex the system, the
more difficult it is to create and manage identifiers, and achieve
their desired properties. To help maintaining the uniqueness,
for example, identifiers often take a structural form, which
follows certain “hierarchical” or “name-spacing” rules.

In the case of IoT ecosystems, which consist of vast
numbers of artifacts, the identifier handling problem becomes

critical. Moreover, if one is to pursue the semantic web
approach to facilitating interoperability, the omnipresence (and
importance) of identifiers still increases – they can point to
arbitrary things, their properties, data they produce, populate
messages they exchange, etc.

Hence, while identifier management presents a complicated
task for a single IoT platform, the situation becomes much
more complex in the context of interoperability of multiple
artifacts, forming an IoT ecosystem. It should be obvious
that any IoT interoperability solution needs to offer methods
for managing identifiers for all “public” artifacts involved in
the ecosystem, formation of which it facilitated. Since IoT
ecosystems are (will be) vastly heterogeneous, it would be
totally unrealistic to assume that their constitutive artifacts
have (as their natural “property”) globally unique identifiers.
Here, globally would mean that if two IoT artifacts join an
interoperable IoT ecosystem, all entities that they “bring on
board” have identifiers that are unique within the formed
(joint) solution. Furthermore, there are no guarantees that
global uniqueness would be sustained some time in the future,
when additional artifacts were included into the ecosystem.
Therefore, any identifier management solution that is to work
in this scenario, needs to provide means of forming unique
“global ecosystem identifiers” and mapping them to the “lo-
cal”, artifact/platform-specific ones (and back).

The process of transforming a local, platform/artifact-
specific, identifier into a global one can build upon the
original identifier, but it can also provide/generate a completely
fresh, “synthetic” ID. In each case, correspondence between
both identifiers should be consistent, i.e. the interoperability
solution should guarantee that the matching of identifiers is
deterministic, and (optionally) persisted and recalled, when
needed. Furthermore, certain additional “technical” considera-
tions may need to be taken into account. For example, it might
be necessary to ensure a specific syntactic form of the formed
global identifier, which might include hashing, encoding, etc.

In the context of an interoperability, each artifact to be added
to an ecosystem may have its own “identifier system”, which
includes the format, syntax, and semantics of identifiers, e.g.
allowed characters, maximum/minimum length, namespacing,
identifier composition and hierarchical sub-structures (e.g. a
part of an ID string that is dedicated for an IoT platform name
+ device name), etc. Such systems can vary greatly, and it
should be assumed that they are not directly compatible, i.e.
IDs established within one artifact cannot be used in another.
We call those local ID systems. Therefore, according to the
“common centerpiece” principle of interoperability (reduction
to a single common standard), we have to develop a global
ID system, which, in theory, should be able to accommodate
identification of any entity in/from artifacts participating in the
ecosystem.

Because we work under the assumption of incompatibility
between local ID systems, a “naive” global ID system that
would simply collect and accept any ID from participating
artifacts, is not feasible, and, more importantly, does not solve
the problem at hand. Instead, we consider the global ID system

that has two core capabilities: (i) to bring all identifiers under
a common format, syntax, and semantics; and (ii) to be able
to identify entities within local ID systems, from which they
originate. To this end, an ID mapping solution is required.

ID mapping is to be realized by a software component called
ID mapper. Its role is to perform two-way transformations
between platform local IDs, and global IDs. The transforma-
tions are mappings, where a single item in the map is a pair
comprised of a local ID, and the corresponding global ID.
In broader terms, any such transformation can be understood
as a pair of functions, one mapping local IDs to global ones,
and the other defining the opposite translation. Typically, these
functions will be “one-to-one”, although, in some cases, this
assumption might be relaxed at the cost of introducing a
suitable “disambiguation mechanisms” [14]. In what follows,
we shall assume they are one-to-one, and further develop the
idea of ID mappers into concrete architectures.

IV. IDENTIFIER MANAGEMENT ARCHITECTURES

Let us now describe, and critically analyze two generic
ID Mapping architectures. Architectures are presented in the
context of an IoT interoperability system that involves IoT
platforms, and an interoperability application, which offers
some services, and to which the platforms connect, in order to
either(i) use the services directly, or to (ii) use the application
to intermediate in communication between platforms.

A. Local ID Mappers

The first architecture (depicted in Figure 1) assumes exis-
tence of local ID mappers. Each such mapper is dedicated
to a platform, and its local ID system. In order to enable
interoperability, generated mapping must conform to a number
of conditions, which are centered around uniqueness. Local
uniqueness of the mapping means that for any local, or
global identifier, there exists only one mapping pair. Global
uniqueness requires that all mappings that use a given global
identifier (which includes mappings in all local ID mappers in
a system), refer to a single entity. Both uniqueness constraints
are further explained in what follows, and touched upon in
Section V, where we present a way to relax them.

The persistent ID mapper storage helps in satisfying the
uniqueness constraints, as well as other challenges of ID
mapping. We assume, that a storage is initialized empty, and it
is filled with mappings during the course of system operation.
Explicitly, this means that the ID mapper does not have “full
knowledge” about entities in the system (neither within its own
platform, other platforms, nor the interoperability application).
This implies a number of ID mapping scenarios, that need to
be addressed:

1) When a global ID, that is not in the storage, comes to
the mapper, it needs to generate a new unique local ID,
and store the mapping.

2) When a local ID, that is not in the storage, comes to the
mapper, it needs to generate a new unique global ID, and
store the mapping.

Figure 1. Local ID mapper architecture

3) When either a local ID, or a global ID, that already has
a mapping in the storage comes to the mapper, it must
use the existing mapping.

Whereas the third scenario can be considered the “usual
operation of a mapper”, the first two can be potentially
non-trivial. The first scenario necessitates that the Local ID
mappers must be familiar with the restrictions and intricacies
of their local ID system. Any ID that they put out towards the
platform, must be compliant with the local ID system. Moreo-
ver, it must be able to make (i.e. generate) new local IDs, and
decide, whether they are unique, in the scope of the platform.
Local uniqueness is satisfied, once those conditions are met.
There are many ways to implement the generation of new IDs,
some of which include asking the platform itself, to create and
identify a new virtual entity, or simply to tell, whether a local
ID is already taken. In principle, the “unrecognized” global
ID will appear, if a platform receives information about an
entity from outside of it. In some interoperability systems, (by
design) this will never be the case, hence the local uniqueness
problem is simplified. In later sections, we describe the impact
of this ID mapping scenario within the INTER-IoT.

The second ID mapping scenario occurs because of our
assumption that the mapper does not have full preexisting
knowledge about all local IDs. It simply involves making a
new global ID from a local ID, and storing the mapping.
This, obviously, necessitates familiarity with the global ID
system (format, semantics and syntax). To ensure global
uniqueness, the new global ID may not be (or have been)
used to identify any other entity. This requirement may be
solved with various implementations that involve communi-
cation with a global ID management module (a part of the
interoperability application). similarly to the solutions to the
first ID mapping scenario, the local ID mapper may simply ask
the interoperability application for a new unique global ID, or
instead, just ask to verify if a specific global ID is already
taken. Alternatively, the local ID mappers may be configured

by the interoperability application, which should provide a
mechanism, by which the local ID mapper is able to generate
unique global IDs on its own. A simple approach along this
line, is to globally manage namespaces, and assign each local
mapper a unique namespace, which must be included in the
global ID generated by local mappers.

B. Global ID Mapper

The second architecture involves a global ID Mapper. Prin-
ciples behind such mapper, as well as services offered by it
are very similar to a local ID mapper, with the important
distinctions and differences that stem from the fact that, in
our architecture, the global ID mapper would be the only ID
mapper in the system. It is also subject to the global, and local
uniqueness constraints. The three mapping scenarios identified
in subsection IV-A also apply to this architecture.

Figure 2. Global ID mapper architecture

Because of the lack of mappers dedicated to each platform,
the global mapper needs to be, to some extent, familiar with
the constraints placed upon all local ID systems of participa-
ting platforms. Because of that, it should be (partially) confi-
gurable by the platforms, in order to enable generation of new
local IDs acceptable by any platform, to which an identifier is
addressed. This requirement stems from the first ID mapping
scenario, where a global ID, previously not encountered,
appears at the global ID mapper. In this architecture, the only
source of such ID can be the interoperability application. If,
however, the role of the application is only to manage entities
on behalf of the platforms, and serve as a middle man that
does not generate any new virtual entities on its own, there will
never be an “unfamiliar” global ID. Whether that is the case
depends on the specific implementation of the interoperability
application.

In any case, if a new global ID is required on the side
of the application, it means that (following the first mapping
scenario) there is an intention to inform a platform about a new

entity. A new local ID must be generated (and persisted as a
mapping pair in the mappers storage) for a specific platform.
Similarly to the local ID architecture, there are many ways to
verify whether a new local ID is valid (i.e. compliant with the
local ID system) and locally unique (see Section IV-A).

It is worth mentioning that generation of new local IDs, in
the global mapper i.e. outside of the scope of the platform
that manages the local ID system, is the most problematic
operation that can be programmed in this architecture. Howe-
ver, in a significant number of systems, identifiers will come
exclusively from platforms. In those cases the problem of local
ID generation in the mapper will not occur.

The second ID mapping scenario is easier to manage in this
architecture, as opposed to the local ID mappers. Whenever a
new local ID appears, it is managed in one central component
(the global ID mapper), so the “assignment” of a new global
ID can be trivially ensured to be unique by simply checking
it against the global IDs already in the mappers storage.
Because there is no other mapper storage in this architecture,
the uniqueness can be, in this way, easily guaranteed. The
process may be somewhat optimized by using namespacing,
where each platform has its own namespace used as part of
newly generated global IDs, but this is in no way required.

V. ROAMING, SHARING, AND SCALING

A number of interesting issues arise when the idea of
interoperability is expanded to include management of one
entity by multiple platforms (sharing) and moving entire
management responsibility of an entity from one platform to
another (roaming). Note that, in this work, we focus exclusi-
vely on identifier management, an we do not discuss any other
practical and theoretical problems that arise with roaming and
sharing, such as data transference and synchronization, data
duplication, security (authentication and authorization), etc.

Let us look at roaming first. In terms of identifiers, this
means that, from the point of view of the whole system, after
the move, a specific entity gets a new identifier, while the old
one becomes invalid, i.e. it should no longer be used to identify
that entity. However, note that, in terms of ID mappers, the
global ID that previously identified the entity should stay the
same. This implies that a change in mappings is required, to
substitute the old local ID for the new one, in every mapping
pair present in any mapping storage.

The global ID mapper architecture enables a relatively easy
solution to this problem, because all mapping pairs are stored
centrally, and (similarly as with the global uniqueness) we
can be sure that we have full access to all mapping pairs.
Therefore, substituting old IDs for new ones is, a “simple ope-
ration”. In this case, platforms that wish to engage in roaming,
should inform the global ID mapper, and the interoperability
application, about it so that they can update their information.
The ID roaming information should simply include the old,
and new local IDs.

The local ID mapper architecture responds somewhat less
elegantly to the roaming ID problem. In principle the global
ID should stay the same, and should be properly “attached” to

the new local ID. This requires removing mapping pairs with
this global ID from the roaming source mapper, and creating
new mapping pair in the target mapper. Because, according
to the architecture, the mappers do not communicate directly
(nor do they need to know about each others existence), the
ID mapping module of the interoperability application must
act as an intermediate. While exactly how this operation is
implemented can vary, in general, it is a complicated one.
In order to perform it correctly, the ID management module
must receive the information about the global ID, the old
local ID, and a new local ID; and send it to the target ID
mapper. Such scheme requires that the platforms first agree
on the new ID, in a way that is explicitly known to the “old”
platform. The old platform needs to be able to forward this
information (ID roaming information) to the ID management
module, which must then forward it to the target mapper (so
the ID mapper information must also be properly addressed).
The target mapper must be enabled to receive the whole
packet of information, and properly interpret it, in a sense
injecting a new mapping pair (that was authoritatively ordered
by the ID mapping module) into its storage. Alternatively,
the ID mappers may communicate directly. In any case the
implementation may become extra complicated and introduce
serious security concerns.

Sharing an entity between two or more platforms means
that it is present in all of the sharing platforms, but none of
them has the “exclusive rights” to use or manage it. Such,
theoretical, situation occurs when an entity is serviced by
different platforms, each using it to provide separate, but not
necessary different services. For instance, data from an IoT
device may be used separately in a visualization service, and
an analytics service. When the local ID systems of sharing
platforms are incompatible, the entity, in effect, needs more
than one local ID (one per ID system).

The local mappers respond very well to the entity sharing
problem, even under the uniqueness constraints. Because each
storage is effectively per-platform, the uniqueness constraints
require only that an entity has one local ID per platform, but
does not limit the number of local IDs mapped to a single
global ID in the system as a whole. Consequently, sharing
does not require any special mechanisms. Different local ID
mappers may store mapping pairs for the same global ID, but
with different local IDs.

The global ID mapper architecture, as described in
Section IV-B, is not prepared to handle sharing. The centrali-
zed ID mapper storage is constrained to having only one local
ID per global ID, in a mapping pair. This essentially prohibits
an entity (uniquely identified by one global ID) to have more
than one corresponding local ID. We will revisit this idea in
what follows.

In order to support sharing, the global ID mapper architec-
ture must be modified. One such modification is the relaxation
of the local uniqueness constraint, i.e. simply allowing multi-
ple local IDs per global ID. However, this solution comes with
its own problems; namely, whenever a local ID is communica-
ted towards a platform, the global ID mapper needs to decide,

which mapping pair to use (i.e. which local ID should go to
that platform). With no additional information, this decision is
very hard to make automatically. One solution to that problem,
is to segment the global ID mapper storage into partitions,
each dedicated to a specific platform. Once each platform has
its own set of mappings, the decision which mapping to use
becomes very simple, assuming that we know the addressee of
an ID. Partitioning the global storage is a substantial change
to the architecture, and is, in a sense, introducing the “third”
one, a hybrid. Here, for obvious reasons, hybrid architecture
can be seen as one “between” the global and local ID mapper
architectures.

The hybrid architecture, visually similar to the one in Figure
2, offers the easiest solutions to sharing and roaming problems,
and is least problematic, when it comes to fulfilling both
uniqueness constraints, and realizing the three ID mapping
scenarios described in Section IV-A. It is, however, impacted
by the problem of generation of new local IDs (a property
shared with the “pure” global ID mapper architecture). Anot-
her caveat is the single-point-of-failure problem, inherent in
any centralized design. The local ID mappers architecture is
distributed, and failure of one mapper does not necessarily
impact the operation of the whole system. In the global and
hybrid architectures there is only one point of failure, and
the whole system depends on it. Note that despite this, the
global partitioned ID mapper storage present in the hybrid ar-
chitecture may be implemented as a distributed storage system,
and application-independent distributed storage solutions are
available on the market. The fact that such software offers data
duplication, distribution, but also automatic synchronization
is important for the satisfaction of global ID uniqueness
constraint.

Another issue, often critical in IoT, is the scalability of the
system. The presented architectures are somewhat indepen-
dent of the scalability problem, because they do not define
implementation details. Nevertheless it it worth mentioning
that the local ID mapper architecture is, by design, distributed.
Local ID mappers are independent and the whole architecture
is naturally scalable and easily distributed across processes
or machines. The global and hybrid architectures are more
centralized, and require specific data storage technologies that
offer distribution of both storage and processing of data and
database connections. Note that for those architectures the
requirement of one common data pool must be satisfied,
regardless of whether the data is physically distributed, or not.
Services, such as transparent data distribution are offered on
lower abstraction layers, than our architectures are about.

One interesting topic, not discussed here in detail, is the
combination of multiple ID mapping architecture implemen-
tations under one “multi-system”. One may consider, for
instance, two global ID mappers to be separate ID systems, and
apply the same architecture in order to bring them together,
treating each, as a new “local” ID system, and mapping it to a
new “super-global” ID system. There are many such solutions,
each impacting scalability and distribution, and we intend to
research them in future works.

VI. IDENTIFIERS IN INTER-IOT
Let us now look briefly into a slightly more specific si-

tuation. In INTER-IoT project, problem of ID management
and mapping occurs on the middleware level (introduced
in Section II). Various artifacts may want to connect to
INTER-MW, and share information about their entities. Each
artifact may have potentially different ID system, but the
communication syntax is constrained to RDF messages, in
a concrete INTER-IoT JSON-LD format. The compliance
is assured via the process called syntactic translation, which,
simply put, transforms “any format” to RDF. Hence, in this
case, identifiers of entities are URIs. Entities in INTER-MW
messages, that are exposed to client, use the URI identifiers,
that are unique within the scope of a single INTER-MW
deployment. As is apparent from the RDF specification, any
URI is subject to a set of constraints, which may, or may not be
compatible with the local ID systems. To rectify this problem,
the GOIoTPex ontology developed within, and for, INTER-IoT
semantic interoperability solution, defines a property called
iiot:hasLocalID. This property can store any textual value,
and any entity in INTER-MW messages may be annotated
with it. This allows INTER-MW to preserve the local ID of
any entity (as a value of an assertion about the iiot:hasLocalID
property), while using URIs to identify entities both internally,
and externally, as the global IDs. The preserved local IDs
also serve as information for ID mapping. This is especially
important, because in RDF entities may be anonymous, in
which case they would not be able to be addressed directly
by external artifacts. The iiot:hasLocalID property may be
mapped to a global ID (URI) in order to a “name” (make
non-anonymous) entities.

VII. CONCLUSIONS AND FUTURE WORK

At the time of writing (January 2018), the INTER-IoT
solution to be implemented in INTER-MW (and applied in
the two pilot deployments) follows the hybrid architecture.
The centralized single-point-of-failure property of the hybrid
solution does not introduce architectural changes to INTER-
MW. Implementing the local ID mappers architecture would
require implementation of many persistent ID mapper storage
components “close” to INTER-MW bridges, which are the
components responsible for communication with platforms.
While it would be much easier to delegate the responsibility
of implementation of the mapper to the bridge implementer,
it would also introduce the need for bridge persistence, which
can otherwise be avoided. The ease of ensuring global and
local uniqueness, as well as the lack of additional requirements
for the bridges made the hybrid architecture the best choice
for INTER-MW.

Obviously, as discussed in Section V, question of scalability
remains open. While, conceptually, the hybrid solution should
be the best from the scalability perspective in majority of
situations, we recognize the fact that this stipulation needs to
be thoroughly tested in simulated and real-life deployments.
However, this will require not only setting up a testbed,
but also developing a comprehensive set of benchmark-like

test scenarios. Here, we believe that before a credible set
of such scenarios can be proposed, knowledge from initial
deployments needs to be gathered first. Hence, we plan to
come back to this issue by the end of this year.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
“Horizon 2020” research and innovation program as part of the
“Interoperability of Heterogeneous IoT Platforms” (INTER-
IoT) project under Grant Agreement No. 687283.

REFERENCES

[1] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasielew-
ska, “Semantic interoperability in the Internet of Things: an overview
from the INTER-IoT perspective,” Journal of Network and Computer
Applications, vol. 81, pp. 111–124, March 2017.

[2] ——, “Semantic technologies for the IoT – an Inter-IoT perspective,” in
2016 IEEE First International Conference on Internet-of-Things Design
and Implementation (IoTDI). Berlin, Germany: IEEE, April 2016, pp.
271–276.

[3] ——, “Towards semantic interoperability between Internet of Things
platforms,” in Integration, Interconnection, and Interoperability of IoT
Systems, R. Gravina, C. E. Palau, M. Manso, A. Liotta, and G. Fortino,
Eds. Springer, 2017, pp. 103–127.

[4] R. Mavlyutov, M. Wylot, and P. Cudré-Mauroux, “A comparison of
data structures to manage URIs on the web of data,” in 12th European
Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31 –
June 4, 2015. Proceedings, ser. Lecture Notes in Computer Science, vol.
9088. Springer, 2015, pp. 137–151.

[5] P. Golodoniuc, N. Car, S. Cox, and R. Atkinson, “PID Service – an ad-
vanced persistent identifier management service for the Semantic Web,”
in 21st International Congress on Modelling and Simulation. Modelling
and Simulation Society of Australia and New Zealand, December 2015.
Proceedings, T. Weber, M. McPhee, and R. Anderssen, Eds., 2015, pp.
767–773.

[6] J. M. Batalla, P. Krawiec, M. Gajewski, and K. Sienkiewicz, “ID layer
for Internet of Things based on Name-Oriented Networking,” Journal
of Telecommunications and Information Technology, vol. 2, pp. 40–48,
2013.

[7] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasielew-
ska, “Alignment-based semantic translation of geospatial data,” in 3rd
International Conference on Advances in Computing, Communication
& Automation (ICACCA), Proceedings, in press.

[8] ——, “Streaming semantic translations,” in 21st International Confe-
rence on System Theory, Control and Computing ICSTCC, Proceedings.
IEEE, 2017, pp. 1–8.

[9] “Resource description framework (RDF),” https://www.w3.org/RDF/.
[10] “JSON-LD 1.0. a JSON-based serialization for Linked Data,” https://

www.w3.org/TR/json-ld/.
[11] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, K. Wasielewska,

and C. E. Palau, “From implicit semantics towards ontologies—practical
considerations from the INTER-IoT perspective (submitted for publi-
cation),” in Proc. of 1st edition of Globe-IoT 2017: Towards Global
Interoperability among IoT Systems, 2017.

[12] P. Szmeja, M. Ganzha, M. Paprzycki, W. Pawłowski, and K. Wasielew-
ska, “Declarative ontology alignment format for semantic translation,”
in 3rd International Conference on Internet of Things: Smart Innovation
and Usages (IoT-SIU 2018), submitted.

[13] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasie-
lewska, “Towards common vocabulary for IoT ecosystems—preliminary
considerations,” in Intelligent Information and Database Systems, 9th
Asian Conference, ACIIDS 2017, Kanazawa, Japan, April 3-5, 2017,
Proceedings, Part I, ser. LNCS, vol. 10191. Springer, 2017, pp. 35–
45.

[14] A. Jaffri, H. Glaser, and I. Millard, “URI disambiguation in the context
of Linked Data.” in Proceedings of the Linked Data on the Web Works-
hop, Beijing, China, April 22, 2008, ser. CEUR Workshop Proceedings,
C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, Eds., vol. 369.
CEUR-WS.org, 2008.

